AI这波浪潮,还有多少机会是留给创业公司的?
在刚刚过去的 CES 2024(国际消费电子展)上,著名 AI 科学家吴恩达和李飞飞进行了一场长达 40 分钟的对谈(详见:《吴恩达对谈李飞飞:寻找你的北极星,让它引导你》)。他们一致预测:这次由大模型引发的 AI 浪潮,不会再像 7 年前那样热闹几年后进入“冰河期”,人工智能的商业基础会持续增长。
但是未来这波浪潮里,又有多少机会是留给创业公司的?进入2024,创投圈的一个明显体感是: 大模型的窗口期已过,留给VC和创业公司的机会不多了。
这一观点并非空穴来风。从数据上看,根据美国投资机构COATUE的统计,截止至2023年11月,风险资本向AI领域的投入已经近300亿美元。具体到国内一级市场,绝大部分投资流向了AI大模型和AI基础设施的头部公司和明星项目。
英诺天使基金合伙人王晟提供了一组数据:目前我国在基金业协会备案VC数量约为12000家,真正敢于大手笔下注、布局了AI重要方向的VC仅为20余家。与此同时,大模型领域项目估值持续增高,第一轮动辄数亿美元的估值,让大部分投资机构望而却步。
这一语境下,2024年AI领域的机会又在哪里?小饭桌得到的一致答案是——应用端。
但一个现实的问题是,AI应用场景庞大且不集中,创业者还要尽量绕开巨头的必经之路,这无疑给新入局者带来了诸多挑战。在峰瑞资本投资合伙人陈石看来,寻找“非共识”机会,将成为创业者成功的关键。
那么,如何从确定性赛道中寻找“非共识”?AI应用端有哪些潜在的投资机会?以及在AI应用创业中又要关注哪些要点和风险?
带着这些问题,小饭桌特别邀请了峰瑞资本投资合伙人陈石、英诺天使基金合伙人王晟、凡卓资本合伙人王梦菲,以“洞见·2024:AI领域投资机遇与展望”为主题展开了深入探讨,并聊了聊如今火热的多模态大模型以及具身智能的创业机会。
一、多模态的机会不在初创公司,具身智能的拐点尚未到来
几乎所有投资人都相信,投资尤其是早期投资的巨大价值,往往隐藏在“非共识”里。
在王晟看来,从非共识变成共识,实际上是一个“Timing”的问题。“非共识分为三个层次,首先一定是建立在大的共识基础上的,只是对于关键时间节点的捕捉、技术范式的选择,以及人和团队的选择不同,造成了非共识。”
以多模态大模型为例。多模态作为下一阶段AI发展的重点,几乎已在业内达成共识。但王晟指出,这一方向对于初创公司的创新环境来说,算不上友好。
“多模态并不算是一个全新的命题,做好多模态大模型的前提,首先是做好大语言模型,如今AI大模型的竞争格局逐渐固化,巨头林立,创业公司的机会不多了。”
王晟认为,AI创业公司的发展机会在于解决新问题。像多模态生成式模型、3D模型等,仍然拥有极其巨大的市场,同时也是英诺更关心的领域。
关于最近持续升温的具身智能赛道,投资人也发表了不同的见解。
在陈石看来,具身智能无疑是AI未来一个比较确定的发展方向,但从技术角度出发,具身智能的实现还面临着诸多挑战。“具身智能首先是语言模型和行动模型的结合,目前行动模型仍然存在许多挑战,如果泛化地去做具身智能,其实是一个比较艰难的方向,而且很容易与巨头狭路相逢。”
他建议,创业公司可以选择在某一行业的垂类场景里去做尝试,积累一些经验,形成局部业务闭环。此外,与具身智能相关的,比如数据公司也是其比较看好的方向。
陈石认为,应用层创业的要点是技术为先,场景为重。团队首先要懂AI技术,准确地把握技术发展的路径,并将其恰当地应用到场景里。但这只是起点,长期来说,一家公司的壁垒很难靠AI建立,基于对行业的深度理解和思考,从而在场景层面领先,打通业务闭环,才是建立壁垒的好机会。
王梦菲对此也表示认同:“无论是AI也好,聚生智能也好,未来都一定是一个伟大的事业,但对于企业来说,前提是他得活到那一天,因此找到闭环,建立自己的壁垒非常重要。”同时她补充道,“尽量离大模型远一点,离大厂远一点。”
而从投资的角度来看,投具身智能究竟是应该投本体还是智能,亦或是关键零部件?
对此王晟则认为,无论是本体还是供应链的关键零部件,本身投资价值不大,具身智能的突破点在于搞定智能。“具身智能对技术团队的要求非常高,需要你既懂机器人又懂AI,这类人是很少的,因此可以看到目前市场上具身智能的项目非常有限。”
虽然团队已经明确将具身智能作为投资方向有挺长一段时间,但在王晟看来,具身智能的拐点尚未到来。
“至少要到今年下半年。多模态大模型突破之后,会给具身智能打开一个窗口。”
二、AI出海、AI安全大有可为,应用创业需注意“流量税”风险
除了在热门赛道寻找突破口,如何挖掘出原生新模式下的创业机会,也是摆在AI创业者面前的重要问题。
陈石指出,在一个新的时代,作为创业公司,需要认真思考,基于这次技术革新,有哪些原生新模式的创业机会。同时还要考虑,哪些是新进入者的机会,哪些是现有行业领先者的机会。
“AI这一波热潮与移动互联网时代有很大不同,因为后者拥有天然的流量优势,人们需要重新在手机上安装软件。但今天,用户终端的格局已经基本确定,我们需要从手机或者PC上的软件中去抢用户和使用时长。在这个过程中,如果创业公司跟行业领先者站在同一起跑线上,做同样的事情,是无法跑出来的。”
在他看来,AI创业者成功的关键,就是在非共识的领域,做正确而非容易的事情。即在赛道选择上不要随大流,敢于进入艰难的领域。
陈石建议,创业者还应积极捕捉和顺应一些宏观趋势,把握相关的红利和机会,例如商品出海、视频电商以及工程师红利等等。AI出海是峰瑞资本十分看好的一个方向。
此外,随着AI技术的进步,我们正面临着一系列与AI安全性相关的挑战。
“AI安全是非常急迫的,它与我们传统的网络信息安全不同。简单来说,新一代的AI能创造多大的价值,那它就有可能给你带来多大损失。”王晟表示。他指出,AI安全也是英诺天使基金重点关注的方向。
除了赛道选择,陈石还重点提到了大模型“流量税”问题,呼吁创业者在创业的早期就应该提前关注和思考未来的商业化问题。
大型语言模型的商业模式是MaaS(Model As a Service),其输出智能的计费方法是按照输入输出的流量(或称token,词元)来收费。
有人做过粗略估计,按照AI应用调用GPT-3.5 Turbo流量的中位数水平,只要有一个用户每天使用该应用(DAU),用户背后的APP公司约需要向OpenAI支付0.2元人民币左右的流量费用。目前国内大模型的流量费跟OpenAI的价格基本相当,部分中小模型会便宜一些,但性能有差距。
另据陈石介绍,目前面向个人用户的应用,规模商业化的途径通常有三种:前向收费(如游戏、增值服务等)、广告以及电商。其中,只有极少数应用有可能把电商做起来,新应用直接向用户收费很难,大多数创业者会考虑选择比较间接的方式——做大用户规模后在应用里做广告来商业化。
而从智能手机时代的情况来看,除了电商应用之外,中国最头部的几个泛资讯类APP估计每天能够在单个活跃用户上赚到的广告收入大约在0.1元到0.3元之间,这已经是广告商业化的极致水平。而一般规模的APP,可能还远远达不到0.1元。
也就是说,广告收入通常很难覆盖得住大语言模型的流量成本。用户规模越大,亏损反而越严重,除非你通过端侧模型等手段把“流量税”降下来。
因此他建议,面向个人用户的应用,当前入局的公司在商业模式设计上可能需要优先考虑前向收费。当然,随着算力成本的降低、模型训练和推理效率的不断提升及应用生态的繁荣发展,“流量税”在未来也存在逐步下降的可能。
陈石的分享也再一次提醒我们,无论商业世界如何星辰大海、竞争厮杀,但投资与创业终将回归商业本质。
本文来自微信公众号:小饭桌(ID:xfzmedia),作者:王满华,编辑:张丽娟
相关推荐
这一波AI浪潮,投资人怎么看?
关于ChatGPT的随想:这波AI浪潮的赢家有哪些?
了不起的创变者 | 爱点击唐健:依靠很少的变量做出决定,赶上这波浪潮
第二次AI芯片浪潮下,中国版英伟达的故事谁来讲?
AI时代,创业公司是否还有机会?| 投资者说
互联网的第三波浪潮,硅谷出局了?
互联网的第三波浪潮, 硅谷出局了?
AI 2.0浪潮下,一些思考+建议
AI时代,拥有更多数据的巨头会垄断么,创业公司是否还有机会?
陆奇最新演讲:从历史进程看AI本质与创业创新的浪潮
网址: AI这波浪潮,还有多少机会是留给创业公司的? http://www.xishuta.com/newsview105718.html
推荐科技快讯
- 1问界商标转让释放信号:赛力斯 94831
- 2人类唯一的出路:变成人工智能 18279
- 3报告:抖音海外版下载量突破1 17828
- 4移动办公如何高效?谷歌研究了 17547
- 5人类唯一的出路: 变成人工智 17382
- 62023年起,银行存取款迎来 10009
- 7网传比亚迪一员工泄露华为机密 8000
- 8顶风作案?金山WPS被指套娃 6446
- 9大数据杀熟往返套票比单程购买 6423
- 1012306客服回应崩了 12 6370