首页 科技快讯 能去码也能打码,OpenCV实时检测视频流人脸并马赛克之,视频后期福音

能去码也能打码,OpenCV实时检测视频流人脸并马赛克之,视频后期福音

来源:晰数塔互联网快讯 时间:2020年04月17日 14:59

编者按:本文来自微信公众号“大数据文摘”(ID:BigDataDigest),作者:牛婉杨,36氪经授权发布。

我们现在经常用到的马赛克其实起源于建筑上的图案装饰,如今马赛克常用于图像或视频的模糊处理。随着技术的进步,打码与去码变成了一种常见的技术研究方向,同时也掀起了一场技术与道德的“战争”。

那么为什么要打马赛克?其实是处于一种隐私保护,例如新闻上出现犯罪嫌疑人的画面时是需要打码的,因为尚未定罪时需要维护嫌疑人的肖像权。

现如今,大部分打马赛克的工作都需要我们手动来打,比如在图像/视频制作软件里添加马赛克。那么这种工作能不能交给AI呢?如果AI可以自动对图像/视频进行实时处理,无疑会帮人类减轻很大的工作量。

答案是可以!Adrian Rosebrock博士在博客中分享了通过OpenCV实现“人脸自动马赛克”这一教程,而这个项目是受到了他的一位博客读者的启发。事实上,这个项目有很大的现实意义。

那么,AI究竟是如何做到自动实时打码的?说到这里,首先需要介绍一下什么是人脸模糊。

什么是人脸模糊?

Adrian Rosebrock博士在博客中详细的分享了技术实现方法,从介绍人脸检测器,人脸模糊的简单步骤,到分别用OpenCV对人脸进行高斯模糊和像素化模糊的详细操作。

Adrian Rosebrock博士的详细教程:

https://www.pyimagesearch.com/2020/04/06/blur-and-anonymize-faces-with-opencv-and-python/

简单来说,实现人脸模糊可以分为以下4步:

第一步:人脸检测

在这一步可以使用任何的人脸检测器,只要它能在图像或视频中生成人脸的边界框坐标就行。

有一些常见的人脸检测工具可以供你参考:

Haar cascades

HOG + Linear SVM

Deep learning-based face detectors

一旦识别到人脸,就可以进入到第二步了。

第二步:图像/视频的ROI提取

脸探测器会给出一个边界框,也就是图像中人脸的坐标(x, y)。

这些坐标通常表示:

人脸边界框的起始坐标x

面部截止的坐标x

人脸位置的起始坐标y

面部截止的坐标y

然后就可以用这些信息来提取人脸ROI(感兴趣区域),如下图所示:

接下来就开始进行人脸模糊啦。

第三步:人脸模糊

说到打码这件事,有两种常用的模糊方式,一个是高斯模糊,一个是像素化模糊。高斯模糊的效果比较“温柔”,但很可能面临着模糊不彻底的问题,而像素化模糊就相当简单粗暴,是我们最常见的马赛克样式。

高斯模糊下的面部图像

这两个模糊方式都可以实现人脸自动模糊这个项目,练习时可以凭你的个人喜好选择。

在进行人脸模糊之后,最后一步就是将模糊后的人脸放回原始图像中。

第四步:将模糊后的照片整合到原始图像中

使用来自人脸检测的原始(x, y)坐标(步骤二中提到的),我们可以得到模糊/匿名化的人脸,然后将其存储到原始图像中(如果使用OpenCV和Python,则此步骤使用NumPy数组切片)。

至此,人脸模糊的部分就完成了。

如何在实时视频中通过AI实现人脸自动模糊?

文摘菌在这里简单展示一下如何使用OpenCV识别人脸,然后再将人脸模糊应用到实时视频流中。

首先需要从Adrian Rosebrock博士的这篇博文中获取源代码,然后打开OpenCV人脸检测器,使用以下命令启动blur_face_video.py:

$ python blur_face_video.py --face face_detector --method simple[INFO] loading face detector model...[INFO] starting video stream...

高斯模糊实时视频流

以可以通过method pixelated来进行像素化的人脸模糊:

$ python blur_face_video.py --face face_detector --method pixelated[INFO] loading face detector model...[INFO] starting video stream...

像素化模糊实时视频流

以上应用的人脸模糊方法,是假设输入视频流的每一帧中都可以检测到人脸。

那么,如果检测器中途未能检测到人脸会怎样?显然,在漏掉的帧中无法进行打码,也就破坏了人脸模糊的目的。

在这种情况下我们该怎么做呢?

通常,在人脸移动的比较慢的情况下,有一个简单的方法是取最后一个已知的面部位置,然后模糊该区域。

还有一种高级的方法是使用专门的对象跟踪器,如果人脸检测器没有识别到,则对象追踪器可以补充提供面部位置,这个方法会复杂很多,因为要在人脸的多个角度建立跟踪,但是这个方法也更加完善。

微软曾提出一种可在视频中通过AI实现人脸模糊的方法

早在2017年,微软研究院就提出了一套基于AI算法的视频人脸模糊解决方案。虽然该算法能够对视频进行自动处理,但是需要用户点击想要打码的人才能打上马赛克。

这套算法能够将源视频中的人物提取出来,并返回给用户,然后用户可以自由选择给谁打码。

要想打码,首先需要找出所有人脸的出现位置,并把同一个人所有帧中的人脸连接起来。为此,需要有三个算法:人脸检测、跟踪、识别。

下图更为详细的展示了关于这套人脸模糊系统具体是如何工作的:

在时间复杂度方面,微软研究院称该系统在Azure的CPU服务器上能够实时处理720p的视频,并且能够以2倍时长处理1080p的高清视频。

技术始终在进步,3年前就可以做到在视频中通过AI进行人脸模糊,3年后已经可以利用AI在实时视频流中自动打码了,我们相信,科技还能做到更多。

尽管,目前AI实时打码这一技术还尚未成熟,但总有一天技术能够“承担”起更多的社会责任,保护更多的人。

相关报道:

https://www.pyimagesearch.com/2020/04/06/blur-and-anonymize-faces-with-opencv-and-python/

https://www.zhihu.com/question/21672713

网址: 能去码也能打码,OpenCV实时检测视频流人脸并马赛克之,视频后期福音 http://www.xishuta.com/newsview21370.html

所属分类:人工智能

推荐科技快讯