今天,你被算法“算计”了吗?
头图来自:东方IC,本文来自微信公众号:经济观察报(ID:eeo-com-on),作者:陈永伟
怎样的算法规制思路才会是更有效的呢?
有两条原则应该是可以被用作参考的,这两个原则分别是:“将人的事情留给人,将算法的事情留给算法”,以及“用规制人的思路来规制算法”。
算法时代的烦恼
我们正在进入一个“算法”的时代。它对我们生活的影响越来越大——我们究竟应该买什么东西、看什么新闻、去哪里上学、是不是应该贷款买车、应该花多少钱来买健康保险……
在作出这些决策时,我们通常要遵循算法的指引。
算法给人们带来的好处是显而易见的。
它可以让我们完成过去难以完成的任务,使我们的眼界大为开阔,还能为我们提供更为个性化的服务……
所有的这些,都可以让我们的福利实现大幅度的改进。
但与此同时,算法的普遍应用也会产生很多的问题。
例如,个性化推荐算法可能限制人的信息来源,让人们陷入“信息茧房”;企业可能利用算法,对消费者进行价格歧视,从而完全剥夺其“消费者剩余”;
借助于算法,企业还可以实现在传统条件下很难达成的合谋,从而让市场的运作效率遭受损害……所有的这些,都是过去不曾遇到过的。
在这样的背景下,如何对算法进行规制,让算法的好处得到充分的发挥,同时尽可能减少因算法而产生的问题,就成了一个热门的话题。
现在,关于算法规制的讨论很多,各种相关的著作和报告也不少。但究竟如何才能让对算法的规制更为有效,目前却依然没有统一的说法。
不少专家认为,要对算法进行有效规制,就必须让算法实现透明化,或者至少要让算法可以被解释。
此外,还有一些专家提出了应该要让算法可以被共享。
这些观点听起来不错,但在操作中面临的困难却很大。
以算法的透明性为例,尽管很多人都呼吁将算法公开,以便其被监督,但这其实很不现实。一方面,对于很多企业来说,算法是核心的资产。
如果强行要求将这些算法公开,那无疑是对企业知识产权的一种侵犯。
另一方面,由于很多算法十分复杂,因此就算它们被公开、被共享了,要想对它们进行有效的监管,即使不是不可能,也会面临很高的成本。
基于以上的原因,在笔者个人看来,通过让算法透明化,然后对其进行规制的思路,恐怕未必能够行得通。
在探索算法规制的过程中,我们需要探索一条更为有效的路径。
规制算法的两个原则
那么,怎样的算法规制思路才会是更有效的呢?
关于这点,笔者现在也很难有一套完整的、明晰的思路。
不过,有两条原则应该是可以被用作参考的,这两个原则分别是:“将人的事情留给人,将算法的事情留给算法”,以及“用规制人的思路来规制算法”。
先看第一条原则。现在我们将算法规制,潜台词是算法本身就是一个可以被规制的独立主体。
但情况并非如此。事实上,在很多情况下,算法本身只是作为一种工具出现的,它至多只是为人的决策行为提供参考。
对于这种情况,要负责任的就应该是人,而不应该是算法。
举例来说,一些电商平台利用算法来对用户进行分级,然后根据分级状况来决定商品的销售价格。
显然,这种行为就是我们熟悉的价格歧视,但这种歧视本质上并不是机器做出的,做决策的还是人。因此要对歧视行为负责的也是人,这和处理传统的行为并没有什么区别。
再看第二条原则。
很多人认为算法规制很难,难就难在算法就是一个黑箱,你不知道里面是什么,是怎么运作的。
因为不知道里面的运行机制,所以也就难以被规制。这个听上去似乎有道理,但细细一想,却存在着很大的纰漏。
什么是算法呢?教科书上的定义是,它就是为解决特定问题而规定的一系列操作。根据这个定义,人自身为了解决问题而进行的思考其实也是一种算法。
既然都是算法,那么是人的算法更加复杂,还是机器的算法更加复杂呢?恐怕应该是人的算法。毕竟,虽然机器的算法很复杂,但至少我们还知道它所应用的编程语言,还知道它在编制过程当中秉承的规则;
而对于人脑中的算法,尽管我们已经研究了很多年,但却始终没有对其使用的“编程语言”,或者运行规则有十分明确的认识。
尽管我们对人脑的运作机制知之不多,但这并不妨碍我们对人的行为进行规制,那么,我们为什么不能用类似的思路来思考对算法的规制呢?
在实践当中,我们如何规制人的行为呢?不妨让我们通过一个具体例子来进行讨论。
举例来说,如果要指挥一个电工安一个灯泡,我们应该怎么做呢?一种思路是,在一边观察这位电工,看他的行为有哪些偏差,一有问题就进行纠正。
这个思路有两个问题:一是成本会很高,因为你需要时时刻刻注视着你的代理人,一刻也不能将眼光离开;
二是这会损害代理人自身的积极性,不能让代理人的应变性、创造性得到有效的发挥。而另外一种思路则是,告诉电工“你若安好,便是晴天;你若安不好,就要倒赔钱给我”。
如果电工接受了你的这个要求,那么你就尽可以放心,他一定会十分仔细地把灯泡安好。尽管你可能不知道他是怎么安的,但他一定是认真、尽力的。
为什么我们可以在不观察电工行为的条件下,就能够指挥他把灯泡安好呢?
其中的道理就在于,我们通过调整电工的支付状况,让他自身的利益和我们达成了一致——如果灯泡安好了,那么我达到了目的,他得到了工钱,皆大欢喜;
而如果灯泡没有安好,那我自然不高兴,但电工的利益也会损失。在这种安排下,我的事就成了他的事,既然是为了自己的事,他就当然有努力的理由了。
在经济学上,这个条件被称为“激励相容条件”。根据相关的理论,如果委托人可以构建激励相容的条件,那么他就可以成功激励代理人作出符合其利益的行为。
在这个过程中,委托人并不需要对代理人的行为进行具体的监督,相应的机制安排就能引导他们按照正确的方向去行事。
算法的问题,其实比人的决策还要简单。
尽管学者们通常把“效用最大化”作为人的行为目标,但由于情绪、心情等因素的存在,人的决策其实并不是那么的理性。
这使得在对人的规制过程中,还需要考虑更多的因素,根据具体的情况来调整规制方式。然而,机器的算法就不存在这种问题。一旦设定了目标,它就会按照这个目标,寻找最优的目标来实现它。
在这个过程中,不会有情绪、心情,或者其他因素的干扰。从这个角度讲,规制者只要设法调整算法的输入目标,保证它是和我们想要的目标一致的,就可以引导它达到我们想要的结果。
这两个规制原则可能有些抽象,下面我们可以通过对算法合谋问题来对它们进行进一步的说明。
算法合谋:老问题的新形式
算法合谋是合谋的一种形式。
什么叫合谋呢?通俗来说,就是市场上的几家企业通过合约或其他形式,共同决定产量或价格。
至少从亚当·斯密开始,合谋问题就备受经济学家的关注。在《国富论》中,斯密有过一段“吐槽”:“同行的人很少聚会,但是他们如果一旦聚会,将不是策划出一个对付公众的阴谋,就是炮制出一个掩人耳目的提价物价的计划”。
为什么经济学家如此重视合谋呢?
原因就在于,它可能带来效率的损失。如果市场上的企业达成了合谋,那么它们的整体就类似于一个垄断者。它们为了获得更好的利润,会对产量进行限制,并同时抬升价格。
在这种情况下,消费者的福利就会受到损害。正是由于这个原因,几乎在所有国家,合谋都被视为一种违法的行为而被加以禁止。
不过,在传统经济条件下,合谋现象并不是特别普遍,这主要是因为合谋本身就具有不稳定性。
试想,如果有几家企业达成协议,维持一个市场高价。
这时,如果其中有一个企业偷偷背约,降低价格,就可以暗中从自己的对手那儿抢得更多的市场,从而获得更高的利润。
由于有这一动机的存在,所以尽管企业之间可以达成合谋,但背地里所有的企业都有偏离合谋的动机。
由于合谋本身就是违法的,因此合谋者不可能通过任何正式的法律手段来维持合谋,只能诉诸于“重复博弈机制”。
换言之,如果有企业在某一时刻违背了合谋的约定,那么所有企业都会在随后的竞争中对它进行“惩罚”。
例如,它们可以对背约者发动价格战,以牺牲自己的代价来打击背约者。从理论上讲,由于忌惮未来可能受到的惩罚,合谋的各方都会遵守自己的承诺,保持参与合谋。
尽管“重复博弈机制”在理论上可以维持合谋,但在传统条件下,它却很难被真正被实施。
原因有二:一是因为背约行为并不容易发现。
在一个市场中,企业之间要关注彼此的价格并不是件容易的事。因此,究竟谁遵守约定,谁又违反了约定,很难被真正地识别出来。
二是因为惩罚本身就有成本。由于有成本,那么在没有外在约束的条件下,参与合谋的企业未必会有约束来执行惩罚。从这个意义上看,所谓的“惩罚”其实只是一个不可置信的威胁。
需要指出的是,究竟一个合谋能否维持,和参与合谋者的数量有很大的关系。
参与合谋的企业越多,背弃合谋的行为就越难被发现,合谋者对背约者进行惩罚的激励也就更低,因而合谋也就更难被维持。
由于这个原因,在传统经济条件下,合谋只可能在竞争主体较少、集中度较高的市场结构下出现,而在竞争主体较多、集中度较低的市场结构下则不太可能出现。
然而,在算法被广泛应用后,以上的情况就出现了改变。
一方面,借助于算法,检测企业的价格行为变得十分容易。因此,哪个企业背约了,其他参与合谋的各方都可以立即发现。
另一方面,有了算法,“惩罚”行为也不需要企业自主去决策,一个“if语句”就搞定了。由于没有了决策过程中的纠结,因此原本不可置信的“惩罚”威胁就变得可信了。
由于这两个原因,所以在有了算法后,合谋行为就更容易出现,并且它也不再会受到市场结构的限制。原本只能发生在集中性较高市场的合谋现象,现在也可以发生在集中性较低的市场了。
对于这一点,我们很容易在直观上找到证据:过去,同一件商品在不同的销售地点通常有不同的价格。
有时,即使相距几十米的两家店,商品的价格也会差别明显。但现在,对于同样的商品,所有网上的店家几乎会给出相同的报价——哪怕它们在不同的平台,哪怕它们的实体店远隔千里。
尽管造成这种价格趋同的原因很多,但其中之一就是算法让合谋变得更为巩固了。
在这种背景下,当代的监管者对于合谋问题的担忧可能要胜过过去的任何时代。
不同的性质,不同的对策
尽管所有涉及算法的合谋都被称为“算法合谋”,但事实上不同的“算法合谋”之间,性质却有巨大的不同。
目前,在文献当中提到最多的“算法合谋”有四类:“信使合谋”(Messenger)、“轴辐合谋”(HubandSpoke)、“可预测合谋”(PredictableAgent),以及“自主机器合谋”(AutonomousMachine)。
在这四类合谋中,算法扮演的角色是迥然不同的。
所谓“信使合谋”,就是在合谋过程中把算法作为一种沟通工具来使用。
例如1993年的“美国政府诉航空运价发布公司案”中,参与合谋的航空公司就应用了订票程序来作为合谋工具。
在这种合谋中,具体的决策还是人作出的,算法只是工具,从本质上讲,它和其它工具并没有什么不同。
所谓“轴辐合谋”,指的是由一个第三方来提供算法作为工具,然后参与的各方利用这个工具来进行合谋。
在这个过程中,算法工具的提供者类似一根“轴”,利用算法进行合谋的企业则类似于通过轴相连的“辐”(注:连结车辋和车毂的直条),因此这种合谋就被叫成“轴辐合谋”。
2015年发生的“迈耶诉优步(U-BER)案”就是涉及轴辐合谋的一个代表性案例。
在这个案例中,美国康涅狄格州居民、环保人士斯宾塞·迈耶(SpencerMeyer)指控优步的定价算法导致了司机之间的合谋——本来,出租车司机是单独定价的,为了争夺客户,他们会进行价格战。
而在有了优步的算法来进行协调后,司机之间就会达成一致,不再进行价格战。在这个过程中,优步的算法就好像是“轴”,它连接起了作为“辐”的所有司机,并支撑起了整个合谋。
不难看到,尽管“轴辐合谋”看上去要比“信使合谋”来得复杂,但从本质上看,算法依然只是在这个过程中充当了工具的角色,具体做出合谋决策的依然是参与合谋的人。
相比于前两类合谋,后两类合谋的性质则有很大的不同:
在“可预测合谋”中,所有参与合谋的企业都分别设计自己的算法。
不过,由于算法的结果有可预测性,计算机也以既定方式来调整交易条件,因此算法的运行结果依然可能达成合谋的效果。
在这种类型的合谋中,人的决策因素就相对较弱了。尽管他们依然可以在事先知道自己的目标,也可以知道算法运行的大致结果,但一旦算法启动,具体出现的结果就不被自己左右了。
而在“自主机器合谋”中,人的因素就变得更弱了。
所有企业只预先给定一个决策目标,例如利润最大化,至于如何达到这个目标,就全部留给机器学习去实现了。
在这种类型的合谋当中,企业的运营者可能并没有进行合谋的动机,但其达成的却是合谋的后果。换言之,真正造成合谋的,其实是机器而不是人。
纵观以上四类合谋,尽管它们都涉及到了算法,被统称为“算法合谋”,但在这四种合谋当中,人在决策过程中的作用是依次递减的,而机器在决策过程中的作用则依次增加。
“信使合谋”和“轴辐合谋”本质上是应用了新技术的旧合谋形式。
根据前面提出的第一条原则,我们完全可以利用现有的竞争法思路来对其进行规制。
事实上,在现有的案例中,人们也是如此进行处理的。
而“可预测合谋”和“自主机器合谋”就不同了。
在这两种合谋中,人的主观因素所起的作用很少,甚至合谋本身都不是企业本身的主观动机。
因此,对于这两种合谋,就很难用现有的竞争法来对其进行规制了。
需要指出的是,虽然传统的竞争法并不适用于处理这两种新型的合谋,但前面指出的第二条原则,我们却依然可以用规制人的思路来对其进行规制。
算法的结果会怎样,主要取决于算法的目标是怎样。既然企业分别设定了利润最大化的目标,就会出现合谋的后果,那么规制者只要设法改变企业的决策目标,就可以诱导它们达成更好的后果。
如前所述,人们之所以不喜欢合谋,是因为它降低了产出、抬升了价格,进而损害了消费者福利。
面对这一问题,规制者如果可以对增加产出的行为提供一定的“奖励”,例如对企业按照产出进行累进的税收返还,那么企业的“利润最大化”目标就会和整个社会福利最大化的目标达成激励相容。
在将这一目标输入机器后,算法就可以自动达成有利于社会福利的后果。在整个过程中,完全无需竞争法的介入,我们想要达到的结果也可能得到实现。
本文来自微信公众号:经济观察报(ID:eeo-com-on),作者:陈永伟
相关推荐
今天,你被算法“算计”了吗?
被“算计”的世界
今天我们被算法“控制”了吗
人民锐评:双11促销,别把计算当算计
中东第三方支付服务,你选对了吗?
你被互联网隐秘操纵了吗?
农夫山泉IPO:高光融资背后全是“算计”
你,转网了吗?
年度互联网热词你GET到了吗?
人工智能还是人工智障?带你看看大型算法翻车现场
网址: 今天,你被算法“算计”了吗? http://www.xishuta.com/newsview3929.html
推荐科技快讯
- 1问界商标转让释放信号:赛力斯 94951
- 2人类唯一的出路:变成人工智能 19220
- 3报告:抖音海外版下载量突破1 18936
- 4移动办公如何高效?谷歌研究了 18463
- 5人类唯一的出路: 变成人工智 18321
- 62023年起,银行存取款迎来 10125
- 7网传比亚迪一员工泄露华为机密 8179
- 8顶风作案?金山WPS被指套娃 7096
- 9大数据杀熟往返套票比单程购买 7045
- 10五一来了,大数据杀熟又想来, 6834